On the Densest Packing of Polycylinders in Any Dimension

نویسنده

  • Wöden Kusner
چکیده

Using transversality and a dimension reduction argument, a result of Bezdek and Kuperberg is applied to polycylinders, showing that the optimal packing density of [Formula: see text] equals [Formula: see text] for all natural numbers n.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Densest Packing of Equal Spheres in Hyperbolic Space

We propose a method to analyze the density of packings of spheres of fixed radius in the hyperbolic space of any dimension m ≥ 2, and prove that for all but countably many radii, optimally dense packings must have low symmetry.

متن کامل

Asymptotically Dense Spherical Codes—Part I: Wrapped Spherical Codes

A new class of spherical codes called wrapped spherical codes is constructed by “wrapping” any sphere packing in Euclidean space onto a finite subset of the unit sphere in one higher dimension. The mapping preserves much of the structure of , and unlike previously proposed maps, the density of wrapped spherical codes approaches the density of as the minimum distance approaches zero. We show tha...

متن کامل

Perfect, Strongly Eutactic Lattices Are Periodic Extreme

We introduce a parameter space for periodic point sets, given as a union of m translates of a point lattice. In it we investigate the behavior of the sphere packing density function and derive sufficient conditions for local optimality. Using these criteria we prove that perfect, strongly eutactic lattices cannot be locally improved to yield a denser periodic sphere packing. This in particular ...

متن کامل

Asymptotically dense spherical codes - Part h Wrapped spherical codes

A new class of spherical codes called wrapped spherical codes is constructed by “wrapping” any sphere packing in Euclidean space onto a finite subset of the unit sphere in one higher dimension. The mapping preserves much of the structure of , and unlike previously proposed maps, the density of wrapped spherical codes approaches the density of as the minimum distance approaches zero. We show tha...

متن کامل

Exactly solvable disordered sphere-packing model in arbitrary-dimensional Euclidean spaces.

We introduce a generalization of the well-known random sequential addition (RSA) process for hard spheres in d-dimensional Euclidean space Rd. We show that all of the n-particle correlation functions of this nonequilibrium model, in a certain limit called the "ghost" RSA packing, can be obtained analytically for all allowable densities and in any dimension. This represents the first exactly sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete & computational geometry

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2016